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What is forecast uncertainty?

How to evaluate forecast uncertainty?

The concept of probabilistic weather 
forecasting
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Deterministic forecast

What is the uncertainty 

related to this forecast?

What are the ingredients of 
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Current state of 

atmosphere not known 

accurately enough

→ Initial state uncertainty

Boundary interactions with 

land surface, sea (and 

driving model) 

→ boundary uncertainty

Due to limited computational 

resources models can’t directly 

describe smallest scale 

phenomena → 

parameterizations  

→ model uncertainty
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Is the uncertainty estimate realistic?

Statistical calibration of global ensemble 
forecast: ECMWF ENS
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Hämäläinen et al., EMS annual meeting, Vol 18, 2018

ECMWF - raw
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FMI’s LIDAR network (5)

⚫ Period: March 2016
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ECMWF - raw

ECMWF - calibrated

⚫ Global ensemble (ECMWF)

⚫ 18km resolution

⚫ +15d forecast

⚫ 50+1 ensemble members

⚫ Wind speed at 100m height

→ relevant for wind energy

⚫ Calibration method: non-Gaussian 

regression

⚫ Observations: Wind profiles from 

FMI’s LIDAR network (5)

⚫ Period: March 2016
1.

2.

3.

1. Calibration increases and improves the 

spread during the first 5 days.

2. Calibration reduces RMS-error.

3. Calibration improves the predictability by 2 

days (in this case).



Statistical calibration of ensemble 
forecast
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Wind speed obs from LIDAR Wind speed obs from RADAR 

Hämäläinen et al., EMS annual meeting, Vol 18, 2018

• Observations are critical in calibration 

→wind speed observations at 100m are sparse

→Calibration test: LIDAR vs. RADAR 



Model uncertainty?

Stochastic physical parameterizations in high 
resolution ensemble prediction system: 

HarmonEPS



TKE = Adv. + Shear ± Buoy. ± sub-grid 
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Stochastic physics: Stochastic 
Perturbation of Parameterisations 
Tendencies (SPPT)

Frogner et al., submitted to Wea. Forecasting , 2019
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Frogner et al., submitted to Wea. Forecasting , 2019

Stochastic perturbation patterns 
Model equations

Forecast (relative humidity, May-June 2017)

SPPT has only marginal benefit! What to do?

1. SPPT perturbs total tendencies → 

combination of all sub-grid processes 

2. More focused perturbations representing 

errors closer to their source could be more 

beneficial.

→ Stochastically Perturbed Parameterizations

(SPP, Ollinaho et al.; 2017) 



Stochastic physics: Stochastically 
Perturbed Parameterisations (SPP)

June 2016 (first results, small sample)

10m wind speed

Total cloudiness

HarmonEPS – ref.

HarmonEPS – SPP

RMSE

RMSE

Spread

Spread

10m wind speed

Figures from Inger-Lise Frogner



Where this development eventually end up?

Joint Numerical Weather Prediction (NWP) 
production between Finland, Sweden and 

Norway: MetCoOp



MetCoOp NWP production

Global radiation forecast

Solar power forecast with uncertainty estimate

⚫ MetCoOp Ensemble Prediction System (MEPS), operational implementation of HarmonEPS.

⚫ Scandinavian + Baltic Sea domain with 2.5km resolution

⚫ 9 + 1 ensemble members

⚫ Forecast 4 times/day: +66h (control), +54h (perturbed members).

⚫ Data available from FMI Open Data interface.
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