

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

(Energia)sään epävarmuuden mallintaminen

Modelling of (energy) weather uncertainty

<u>Project:</u> Improving the value of variable and uncertain power generation in energy systems (VaGe)

<u>Funding:</u> Academy of Finland, New Energy Programme, 2014 – 2018

Sami Niemelä, Karoliina Hämäläinen, Janne Kauhanen, Pirkka Ollinaho, Juha Kilpinen and Anders Lindfors

What is forecast uncertainty?

How to evaluate forecast uncertainty?

The concept of probabilistic weather forecasting

Is the uncertainty estimate realistic?

Statistical calibration of global ensemble forecast: ECMWF ENS

Statistical calibration of ensemble forecast

Statistical calibration of ensemble forecast

Hämäläinen et al., EMS annual meeting, Vol 18, 2018

Statistical calibration of ensemble forecast

- Observations are critical in calibration
- \rightarrow wind speed observations at 100m are sparse
- →Calibration test: LIDAR vs. RADAR

Model uncertainty?

Stochastic physical parameterizations in high resolution ensemble prediction system: HarmonEPS

Stochastic physics: Stochastic Perturbation of Parameterisations Tendencies (SPPT)

Model equations

 $\frac{\partial \rho}{\partial t} = -(\nabla \cdot \rho \bar{\mathbf{V}})$

 $\frac{\partial \bar{\mathbf{V}}}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla \bar{\mathbf{V}} - \rho^{-1} \nabla p + \bar{\mathbf{g}} - 2\bar{\mathbf{\Omega}} \times \bar{\mathbf{V}} + \bar{\mathbf{F}}_{\mathbf{r}} + \mathbf{S}_{\mathbf{V}}$ $\frac{\partial \theta}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla \theta + S_{\theta}$

 $\frac{\partial q_n}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla q_n + S_{q_n}$

 $TKE = Adv. + Shear \pm Buoy. \pm sub-grid$

Stochastic physics: Stochastic Perturbation of Parameterisations Tendencies (SPPT)

Model equations

Stochastic perturbation patterns

Stochastic physics: Stochastic Perturbation of Parameterisations Tendencies (SPPT)

Model equations

 $\frac{\partial \rho}{\partial t} = -(\nabla \cdot \rho \bar{\mathbf{V}})$

$$\frac{\partial \bar{\mathbf{V}}}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla \bar{\mathbf{V}} - \rho^{-1} \nabla p + \bar{\mathbf{g}} - 2\bar{\mathbf{\Omega}} \times \bar{\mathbf{V}} + \bar{\mathbf{F}}_{\mathbf{r}} + \mathbf{S}_{\mathbf{V}}$$

$$\frac{\partial \theta}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla \theta + S_{\theta}$$
$$\frac{\partial q_n}{\partial t} = -\bar{\mathbf{V}} \cdot \nabla q_n + S_{q_n}$$

TKE = Adv. + Shear ± Buoy. <u>± sub-grid</u>

Stochastic perturbation patterns

Forecast (relative humidity, May-June 2017)

REF - SPPT 0.2 - SPPT 0.33

SPPT has only marginal benefit! What to do?

1. SPPT perturbs total tendencies \rightarrow combination of all sub-grid processes

2. More focused perturbations representing errors closer to their source could be more beneficial.

 \rightarrow <u>Stochastically Perturbed Parameterizations</u> (SPP, *Ollinaho et al.; 2017*)

Stochastic physics: Stochastically Perturbed Parameterisations (SPP)

June 2016 (first results, small sample)

10m wind speed

Total cloudiness

Where this development eventually end up?

Joint Numerical Weather Prediction (NWP) production between Finland, Sweden and Norway: MetCoOp

MetCoOp NWP production

- MetCoOp Ensemble Prediction System (MEPS), operational implementation of HarmonEPS.
- Scandinavian + Baltic Sea domain with 2.5km resolution
- 9 + 1 ensemble members
- Forecast 4 times/day: +66h (control), +54h (perturbed members).
- Data available from FMI Open Data interface.

Global radiation forecast

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Project: Improving the value of variable and uncertain power generation in energy systems (VaGe)

Funding: Academy of Finland, New Energy Programme, 2014 – 2018

