CASE ÅLAND

100% RENEWABLE SCENARIOS

Åland FLEXe demo – Final Seminar 9 January, Helsinki

Juha Pitsinki & Jyrki Leino Wärtsilä Finland Oy

Purpose of power system modeling in Wärtsilä

1. Understand operation and fundamentals of power systems

- In regulated and open electricity markets
- Illustrate future challenges of power systems

2. Quantify system level benefits of different power plants

- Optimizing system total cost
- Understand value of flexibility in a system
- Finding optimal capacity mix

3. Understand and promote high quality modeling

- Co-optimization of energy and operation reserves
- High detail & resolution
- Transparent modeling
- Actively developing new modelling methods

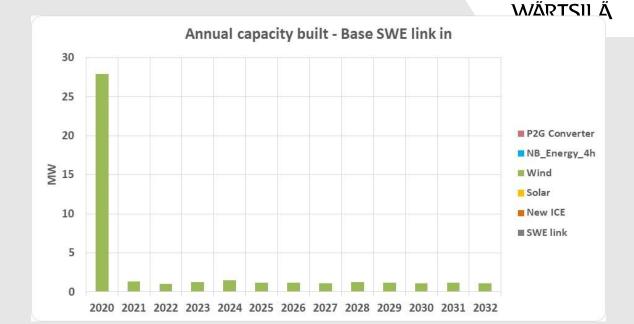
INPUTS	MODEL	OUTPUTS
 Scenarios: Q₂ targets RES learning curves Political system planning Forced new builds System data: Forced new builds System data: Transmission Fuels Demand + Growth rate Reserves Fleet data: Power plants Dispatch constraints Renewable/hydro profiles Candidates: New build candidates with CAPEX 	<text><section-header><section-header><text></text></section-header></section-header></text>	Outputs Capacity buildout 2020-2030 - 11_base 30.000 Flourly energy dispatch 25. Reserve prevision Generator level OPEX/FOM/CAPEX 20. Generator level OPEX/FOM/CAPEX Engine 215. Fuel consumption Engine 10. Emissions (CO2) 5. System reliability 10. New built capacity Foresents/Value3 10. ECOE 2022 203 2024 2025 2027 2028 2029 2030 10. Ecoever System Net Presents/Value30 10. Efficience Gethermal 10. Ecoever System Net Presents/Value30 10. Efficience Gethermal 10. Ecoever Stord 10. Ecoever Ecoever 10. Ecoever

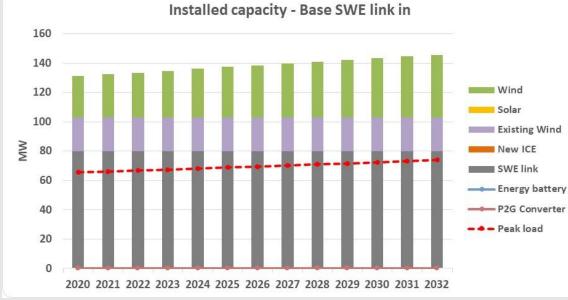
Base Case

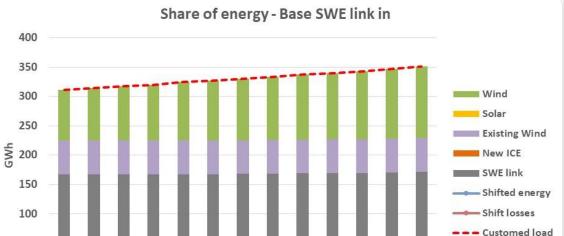
Link to Sweden maintained New capacity added on a lowest cost basis

100% RES scenario (Power-to-Gas)

Link to Sweden gradually "cut" by 2030 New capacity added on a lowest cost basis Options for new capacity: Wind, Solar, Batteries and PtG (engine)


Target: Reach 100% RES share in Åland by 2030, link to Sweden gradually "cut" by 2030


- Demand growth 1% p.a. starting from 300 GWh
- Existing generation fleet as-is (only wind)
- New capacity added on a lowest cost basis to meet the demand on hourly level (optimization on yearly level)
- Wind (new onshore capacity) cost 35 EUR/MWh, Solar cost 80 EUR/MWh (current price level)
 - Wind cost ~25 EUR/MWh in 2030, Solar cost ~45 EUR/MWh in 2030
 - Cost projections based on Bloomberg forecast
- *SWE link* electricity import price 50 EUR/MWh (full flexibility assumed)
- When SWE link "cut", batteries and engine based PtG as options to provide flexibility
- No CHP included
- No demand response or EVs included
- No electricity sales outside Åland
- No optimization of investment timing
- No consideration where to locate new generation capacity, or how long the permitting process would take


BASE CASE – LINK TO SWEDEN MAINTAINED, NEW CAPACITY ADDED ON A LOWEST COST BASIS

PRELIMINARY

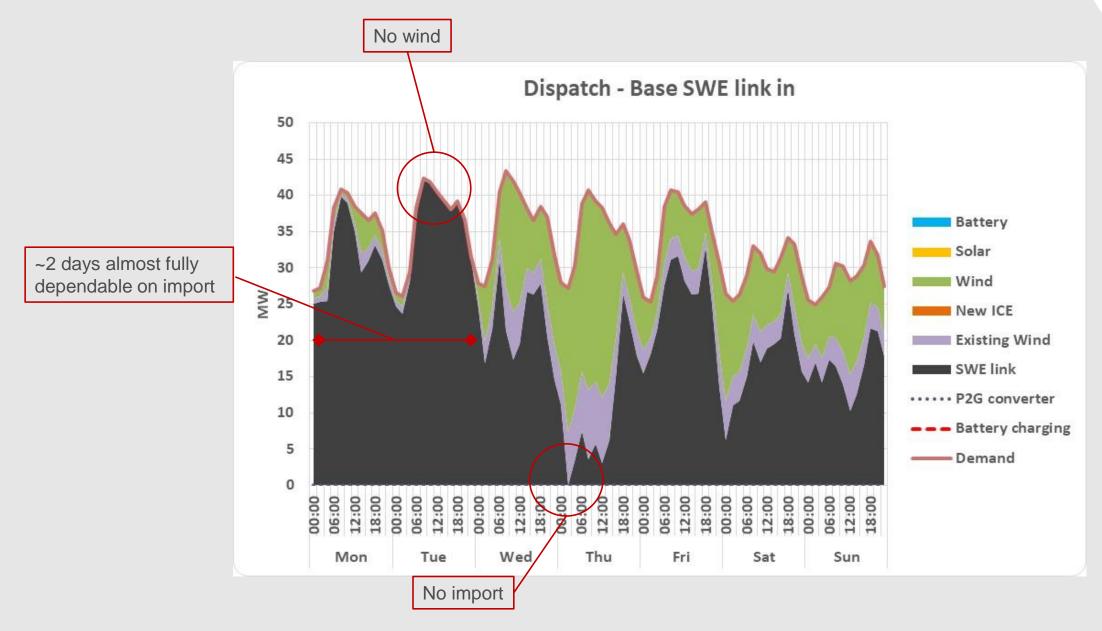
- In the beginning imported electricity replaced by cheap wind, and thereafter increasing demand met by new wind capacity
- Low amount of curtailment (10–20%)
- >50% RES reached by 2030
- Cheapest option to increase RES share

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

50

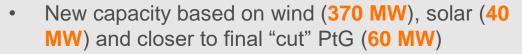
0

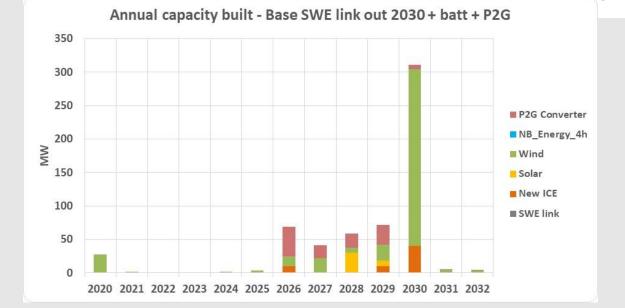
© Wärtsilä

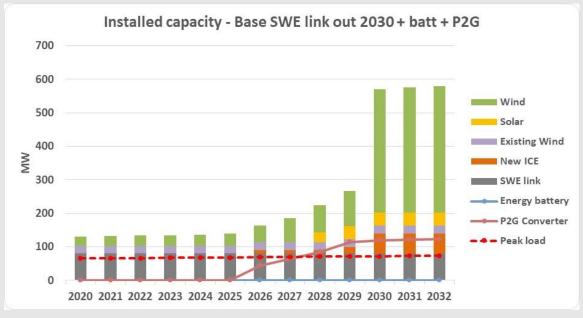

7

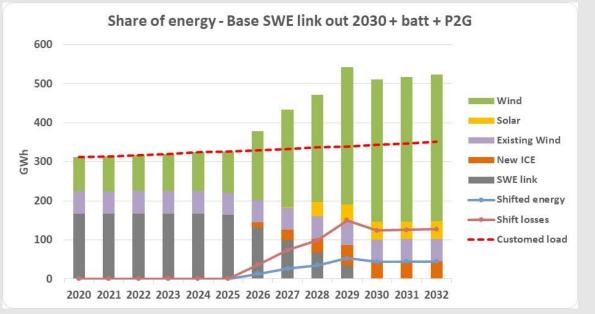
1/14/2019

BASE CASE – EXAMPLE OF DISPATCHING (ONE WEEK IN 2030)


PRELIMINARY

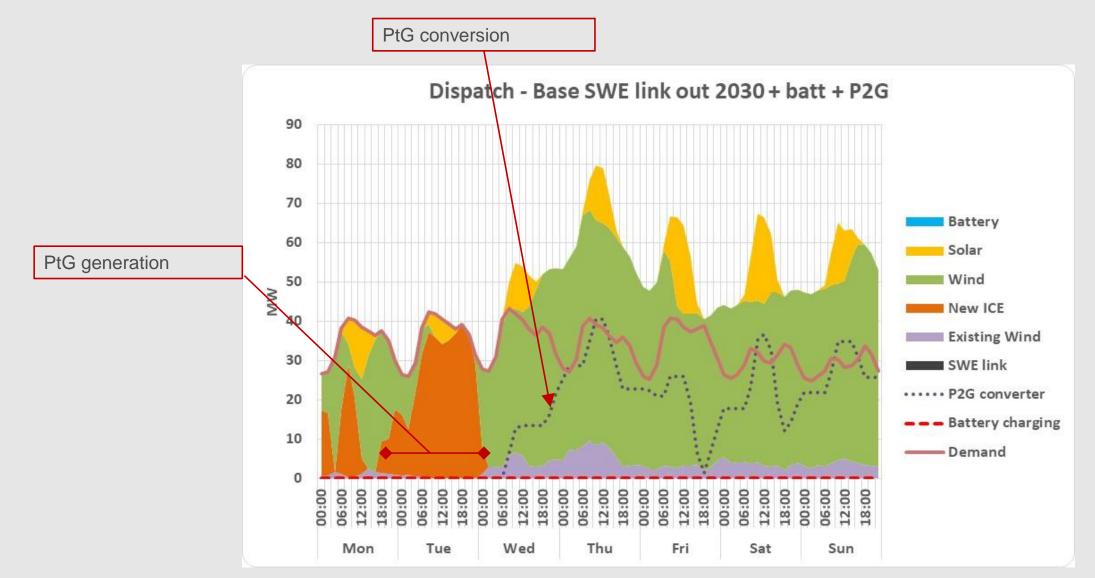



PRELIMINARY



- High amount of curtailment (60–70%)
- Lot of additional capacity needed for PtG
- 100% RES reached by 2030
- System cost increases up to 7X
 - Assume fixed cost for PtG conversion
 - Assume no sales of excess electricity

Μ/ΆΡΤςΙΙ Ά



100% RES – EXAMPLE OF DISPATCHING (ONE WEEK IN 2030)

PRELIMINARY

Steps to 100% renewable power system in Åland

- <u>Step 1</u>: RES 50% is the optimum from cost perspective, and achieved by just adding wind and some curtailing
- <u>Step 2</u>: "Forced" RES 80% achieved by curtailing wind --> system cost increases 50–100%
- <u>Step 3</u>: "Forced" RES 100% achieved with PtG --> system cost increases up to 7X
 - Cost development of PtG technology not known yet
- Note. Selling curtailed electricity to Sweden (or Finland) could improve the business cases significantly

